Phi meson propagation in a hot hadronic gas Luis Alvarez-Ruso^a, Volker Koch^b ^a Justus-Liebig-Universität Giessen, Germany ^bLawrence Berkeley National Laboratory #### Introduction #### Quark-Gluon Plasma Enhanced production of strange quarks Enhancement of strange particles $(K, \phi, \Lambda, \Omega)$ #### Introduction - ϕ is a nice probe: \leftarrow A. Shor, P.R.L. 54 (1985) 1122 - ϕ production in pp and πp is OZI suppressed - Coalescence: $s\bar{s} \rightarrow \phi$ - it can be detected using both kaon pairs (K^+K^-) and dileptons $(e^+e^-, \mu^+\mu^-)$ #### Introduction • Widely accepted that ϕ 's have a large mean free path in a hot hadronic matter For example (K. Haglin, N.P.A 584 (1993) 719): $$\lambda$$ ($T=200$ MeV) = 4.4 fm λ ($T=150$ MeV) = 14 fm Phenomenological Lagrangians with couplings extracted from observed partial decay rates Many mechanisms that include vertices allowed by the symmetries of QCD, like ϕK^*K or ρK^*K^* , are not taken into account. ## Hidden Local Symmetry Lagrangian • Vector mesons ρ , ω , K^* , ϕ are the gauge bosons of the hidden local U(3) $_{\rm V}$ symmetry. M. Bando, T. Kugo, K. Yamawaki, P.Rep. 164 (1988) 217 • Spontaneous symmetry breaking $\Rightarrow m_V$ $$m_V^2 = 2g^2 f_\pi^2 \;, \qquad g^2 \leftarrow VPP \; \text{coupling}$$ - Anomalous part of the Lagrangian $\Rightarrow VVP$ vertex - Kinetic term for vector mesons ⇒ VVV and VVVV vertices: • Relevant vertices: *VPP*, *VVP*, *VVV*, *VVVV* • No direct couplings of ϕ with π , ρ or ω (OZI rule) | No. | Reaction | Channels | |-----|----------------------------------|------------| | 1.1 | $\phi + \pi \rightarrow K + K$ | $t(K^*)$ | | 1.2 | $\phi + \pi \rightarrow K + K^*$ | $t(K,K^*)$ | | 1.3 | $\phi + \pi \to K^* + K^*$ | $t(K,K^*)$ | | No. | Reaction | Channels | |-----|-----------------------------------|---| | 2.1 | $\phi + K \to \pi + K$ | $\mathbf{s,t}(K^*)$ | | 2.2 | $\phi + K \rightarrow \rho + K$ | $s,t(K,K^*)$ | | 2.3 | $\phi + K \rightarrow \omega + K$ | $\mathbf{s,t}(K,K^*)$ | | 2.4 | $\phi + K \rightarrow \phi + K$ | $\mathbf{s,t}(K,K^*)$ | | 2.5 | $\phi + K \to \pi + K^*$ | $\mathbf{S}(K,K^*)$, $\mathbf{t}(K^*)$ | | 2.6 | $\phi + K \to \rho + K^*$ | $s,t(K,K^*)$ | | 2.7 | $\phi + K \to \omega + K^*$ | $\mathbf{s,t}(K,K^*)$ | | 2.8 | $\phi + K \to \phi + K^*$ | $\mathbf{s,t}(K,K^*)$ | | No. | Reaction | Channels | |-----|-----------------------------------|------------------| | 3.1 | $\phi + \rho \rightarrow K + K$ | $t(K,K^*)$ | | 3.2 | $\phi + \rho \rightarrow K + K^*$ | $t(K,K^*)$ | | 3.3 | $\phi + \rho \to K^* + K^*$ | $t(K,K^*)$, c | | No. | Reaction | Channels | |-----|-------------------------------|------------------| | 4.1 | $\phi + \omega \to K + K$ | $t(K,K^*)$ | | 4.2 | $\phi + \omega \to K + K^*$ | $t(K,K^*)$ | | 4.3 | $\phi + \omega \to K^* + K^*$ | $t(K,K^*)$, c | | No. | Reaction | Channels | |-----|---------------------------------|---| | 5.1 | $\phi + K^* \to \pi + K$ | $\mathbf{S}(K^*)$, $\mathbf{t}(K,K^*)$ | | 5.2 | $\phi + K^* \to \rho + K$ | $\mathbf{s,t}(K,K^*)$ | | 5.3 | $\phi + K^* \to \omega + K$ | $\mathbf{s,t}(K,K^*)$ | | 5.4 | $\phi + K^* \to \phi + K$ | $\mathbf{s,t}(K,K^*)$ | | 2.5 | $\phi + K^* \to \pi + K^*$ | $\mathbf{s,t}(K,K^*)$ | | 5.6 | $\phi + K^* \to \rho + K^*$ | $\mathbf{s,t}(K,K^*),\mathbf{c}$ | | 5.7 | $\phi + K^* \to \omega + K^*$ | $\mathbf{s,t}(K,K^*),\mathbf{c}$ | | 5.8 | $\phi + K^* \to \phi + K^*$ | $\mathbf{s,t}(K,K^*),\mathbf{c}$ | | No. | Reaction | Channels | |-----|---------------------------------|------------------| | 6.1 | $\phi + \phi \rightarrow K + K$ | $t(K,K^*)$ | | 6.2 | $\phi + \phi \to K + K^*$ | $t(K,K^*)$ | | 6.3 | $\phi + \phi \to K^* + K^*$ | $t(K,K^*)$, c | ## Collision rates #### Collision rates • Why $\Gamma_{coll}^{(K^*)} > \Gamma_{coll}^{(K)}$? $$\left. \frac{n_{K^*}}{n_K} = \frac{3m_{K^*}^2 K_2(m_{K^*}/T)}{m_K^2 K_2(m_K/T)} \right|_{T=200~\mathrm{MeV}} = 0.77 \leftarrow \begin{array}{c} \text{not so} \\ \text{small} \end{array}$$ - Large contributions to $\sigma_{\phi K^*}$ from: $\phi + K^* \to \rho + K^* \\ \phi + K^* \to \omega + K^* \\ \phi + K^* \to \phi + K^*$ - Inelastic reactions account for > 80 % of Γ_{coll} ## Mean free path Very short mean free path! # Time evolution of ϕ number in an expanding hadronic fireball ### **Assumptions:** - An ideal gas of π , K, ρ , ω , K^* - Kinetic equilibrium for all species including ϕ 's - Chemical equilibrium for all species except φ's - Cylindrical symmetry and boost invariance - Longitudinal and radial transverse expansion - Entropy conservation - Rate equation: $$\partial_{\mu} \left(n_{\phi} u^{\mu} \right) = -\Gamma \left(n_{\phi} - n_{\phi}^{eq} \right), \ \Gamma = \Gamma_{coll}(T) + \Gamma_{dec}(T)$$ ## Different hadronization temperatures ## Different flow velocities #### **Conclusions** - ϕ meson interaction with a hot hadronic gas composed of $\pi, K, \rho, \omega, K^*, \phi$ has been studied using the Hidden Local Symmetry model. - Large ϕ collision rates with K, ρ and specially K^* . - Short mean free path: $1 \le \lambda \le 5$ fm at $200 \ge T \ge 150$ MeV. - High collision rates cause a reduction of the φ number. - $N/N_0 \sim 5-45$ % depending on hadronization and freezeout temperatures, flow velocity and chemical potentials.